22 research outputs found

    Event-Driven Data Gathering in Pure Asynchronous Multi-Hop Underwater Acoustic Sensor Networks

    Full text link
    [EN] In underwater acoustic modem design, pure asynchrony can contribute to improved wake-up coordination, thus avoiding energy-inefficient synchronization mechanisms. Nodes are designed with a pre-receptor and an acoustically adapted Radio Frequency Identification system, which wakes up the node when it receives an external tone. The facts that no synchronism protocol is necessary and that the time between waking up and packet reception is narrow make pure asynchronism highly efficient for energy saving. However, handshaking in the Medium Control Access layer must be adapted to maintain the premise of pure asynchronism. This paper explores different models to carry out this type of adaptation, comparing them via simulation in ns-3. Moreover, because energy saving is highly important to data gathering driven by underwater vehicles, where nodes can spend long periods without connection, this paper is focused on multi-hop topologies. When a vehicle appears in a 3D scenario, it is expected to gather as much information as possible in the minimum amount of time. Vehicle appearance is the event that triggers the gathering process, not only from the nearest nodes but from every node in the 3D volume. Therefore, this paper assumes, as a requirement, a topology of at least three hops. The results show that classic handshaking will perform better than tone reservation because hidden nodes annulate the positive effect of channel reservation. However, in highly dense networks, a combination model with polling will shorten the gathering time.Blanc Clavero, S. (2020). Event-Driven Data Gathering in Pure Asynchronous Multi-Hop Underwater Acoustic Sensor Networks. Sensors. 20(5):1-16. https://doi.org/10.3390/s20051407S116205Roy, A., & Sarma, N. (2018). Effects of Various Factors on Performance of MAC Protocols for Underwater Wireless Sensor Networks. Materials Today: Proceedings, 5(1), 2263-2274. doi:10.1016/j.matpr.2017.09.228Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wireless Communications and Mobile Computing, 2019, 1-20. doi:10.1155/2019/6470359Rudnick, D. L., Davis, R. E., Eriksen, C. C., Fratantoni, D. M., & Perry, M. J. (2004). Underwater Gliders for Ocean Research. Marine Technology Society Journal, 38(2), 73-84. doi:10.4031/002533204787522703Petritoli, E., & Leccese, F. (2018). High Accuracy Attitude and Navigation System for an Autonomous Underwater Vehicle (AUV). ACTA IMEKO, 7(2), 3. doi:10.21014/acta_imeko.v7i2.535Nam, H. (2018). Data-Gathering Protocol-Based AUV Path-Planning for Long-Duration Cooperation in Underwater Acoustic Sensor Networks. IEEE Sensors Journal, 18(21), 8902-8912. doi:10.1109/jsen.2018.2866837Sun, J., Hu, F., Jin, W., Wang, J., Wang, X., Luo, Y., … Zhang, A. (2020). Model-Aided Localization and Navigation for Underwater Gliders Using Single-Beacon Travel-Time Differences. Sensors, 20(3), 893. doi:10.3390/s20030893Wahid, A., Lee, S., Kim, D., & Lim, K.-S. (2014). MRP: A Localization-Free Multi-Layered Routing Protocol for Underwater Wireless Sensor Networks. Wireless Personal Communications, 77(4), 2997-3012. doi:10.1007/s11277-014-1690-6Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks. Sensors, 12(6), 6837-6856. doi:10.3390/s120606837Li, S., Qu, W., Liu, C., Qiu, T., & Zhao, Z. (2019). Survey on high reliability wireless communication for underwater sensor networks. Journal of Network and Computer Applications, 148, 102446. doi:10.1016/j.jnca.2019.102446Jiang, S. (2018). State-of-the-Art Medium Access Control (MAC) Protocols for Underwater Acoustic Networks: A Survey Based on a MAC Reference Model. IEEE Communications Surveys & Tutorials, 20(1), 96-131. doi:10.1109/comst.2017.2768802Chirdchoo, N., Soh, W., & Chua, K. C. (2008). RIPT: A Receiver-Initiated Reservation-Based Protocol for Underwater Acoustic Networks. IEEE Journal on Selected Areas in Communications, 26(9), 1744-1753. doi:10.1109/jsac.2008.081213Zenia, N. Z., Aseeri, M., Ahmed, M. R., Chowdhury, Z. I., & Shamim Kaiser, M. (2016). Energy-efficiency and reliability in MAC and routing protocols for underwater wireless sensor network: A survey. Journal of Network and Computer Applications, 71, 72-85. doi:10.1016/j.jnca.2016.06.005Khasawneh, A., Latiff, M. S. B. A., Kaiwartya, O., & Chizari, H. (2017). A reliable energy-efficient pressure-based routing protocol for underwater wireless sensor network. Wireless Networks, 24(6), 2061-2075. doi:10.1007/s11276-017-1461-xSánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2015). An Acoustic Modem Featuring a Multi-Receiver and Ultra-Low Power. Circuits and Systems, 06(01), 1-12. doi:10.4236/cs.2015.6100

    Dependability assessment of by-wire control systems using fault injection

    Full text link
    This paper is focused on the validation by means of physical fault injection at pin-level of a time-triggered communication controller: the TTP/C versions C1 and C2. The controller is a commercial off-the-shelf product used in the design of by-wire systems. Drive-by-wire and fly-by-wire active safety controls aim to prevent accidents. They are considered to be of critical importance because a serious situation may directly affect user safety. Therefore, dependability assessment is vital in their design. This work was funded by the European project `Fault Injection for TTA¿ and it is divided into two parts. In the first part, there is a verification of the dependability specifications of the TTP communication protocol, based on TTA, in the presence of faults directly induced in communication lines. The second part contains a validation and improvement proposal for the architecture in case of data errors. Such errors are due to faults that occurred during writing (or reading) actions on memory or during data storage.Blanc Clavero, S.; Bonastre Pina, AM.; Gil, P. (2009). Dependability assessment of by-wire control systems using fault injection. Journal of Systems Architecture. 55(2):102-113. doi:10.1016/j.sysarc.2008.09.003S10211355

    La WIKI en el Aprendizaje de los Estudiantes Universitarios de Ingenierías

    Full text link
    [EN] This paper presents an innovation research on promoting self-learning and collaborative writing in engineering university courses. The work is focused on the development of a course Wiki as the leitmotiv of the students activity. Students produce self-contained and reusable Wiki pages within the course framework attending to a suitable work planning. Additionally to help the student on the achievement of curricula, the Wiki is also available to the whole group in the form of self-study material adapted to the students group. Wikis provide teachers with potentially significant opportunities for creating socially engaged tasks that require active student participation and collaboration. Wikis allow students to carry out a collaborative writing stimulating reflection, knowledge sharing, and critical thinking. However, despite the potential capabilities of wikis, there is a need for a systematic process to the construction of this virtual writing space and the use of this tool for upper expectations in a deep real learning approach. The paper also reports on the evaluation of the approach by means of quantitative data collection.Blanc Clavero, S.; Yuste Pérez, P. (2014). La WIKI en el Aprendizaje de los Estudiantes Universitarios de Ingenierías. En Strategies for education in a new context: INNODOCT'14 : International Conference on Innovation, Documentation and Teaching Technologies, held on-line in Valencia, Spain, on 8-9 May, 2014. https://riunet.upv.es/handle/10251/40350. Editorial Universitat Politècnica de València. 791-802. http://hdl.handle.net/10251/82186S79180

    Los proyectos ApS y el aprendizaje competencial del estudiante

    Full text link
    [ES] El presente trabajo recoge un estudio comparativo entre dos asignaturas dis-tintas, Alemán académico y profesional A1 y Planificación y dirección de proyectos TI con alumnado de dos niveles académicos diferentes, grado y máster, que llevaron a cabo proyectos de Aprendizaje Servicio como parte del currículo. La investigación se centra en la respuesta por parte del alumnado respecto al desarrollo de competencias profesionales durante la consecución de los proyectos. Para ello, se llevo a cabo la misma encuesta con valores de tipo Likert en ambos grupos. Los resultados permiten afirmar que el Aprendi-zaje Servicio, como metodología de aprendizaje, permite potenciar la respon-sabilidad social, el trabajo colaborativo y la aplicación de lo que se está aprendiendo.Blanc Clavero, S.; Gil-Salom, D. (2019). Los proyectos ApS y el aprendizaje competencial del estudiante. Universitat Politècnica de València. 1-8. http://hdl.handle.net/10251/179801S1

    eSGarden: a European initiative to incorporate ICT in schools

    Full text link
    [EN] Knowledge transfer to the society is undoubtedly one of the main objectives of Universities. However, it is important that these advances reach the youngest, many of them, future university students. Having this in mind, a European project around how incorporating ICT in school gardens was proposed (SCHOOL GARDENS FOR FUTURE CITIZENS, 2018-1-ES01-KA201-050599). In this project, both universities and schools, belonging to five European countries, are collaborating with public and private organizations with social concerns, environmental responsibility and sustainability. School gardens is a broad topic that combine technological needs for managing and control with education in values of environmental sustainability, social inclusion and citizenship, transmission of tradition, and the promotion of digital culture in both girls and boys from the early school stages. These last aspects are aligned with some sustainable development targets (SDGs), such as ensuring healthy lives and promote well-being for all at all ages, inclusive and equitable quality education, gender equality or responsible consumption. A further challenge of the consortium is to extend the proposed approach to other schools throughout Europe with the same interests and impact, considering cultural diversity and climate differences.Blanc Clavero, S.; Benlloch-Dualde, J. (2019). eSGarden: a European initiative to incorporate ICT in schools. En Proceedings 5th CARPE Conference: Horizon Europe and beyond. Editorial Universitat Politècnica de València. 29-37. https://doi.org/10.4995/CARPE2019.2019.10209OCS293

    Digital Learning Object Production in Engineering Courses

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents an innovative-project research on promoting self-learning in engineering university courses. This paper is focused on students’ homework, which consists in producing learning objects. The digital objects are self-contained and reusable within the course framework according to a suitable work plan and supported by digital tools. Additionally, in order to help the student on the achievement of curricula competences by producing these objects, they are also available to the whole group in the form of a digital collection of self-study material adapted to the group’s characteristics. This paper describes a case of study, analyses students’ perception of the activity, and quantifies the success of the experience.Blanc Clavero, S.; Benlloc Dualde, JV. (2014). Digital Learning Object Production in Engineering Courses. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje. 9(2):43-48. doi:10.1109/RITA.2014.2317524S43489

    Learning supported by peer production and digital ink

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper describes experiences that combine digital peer production with digital ink affordances. Rather than preparing papers to obtain a summative final mark, students work over the course of the term producing different small learning resources such as short engineering problems, reasoning or synthesis where the lecturer acts as manager and supervisor. Teacher intervention is carried out using digital ink over each individual student production being possible to share the results throughout a public or group repository and in class offering a pro-active argument about preventing common mistakes. In order to enhance students programming skills important efforts are oriented to produce learning objects in the form of Java applets. It has the additional advantage of fostering collaborative knowledge construction because any object serves to the whole group as learning material as soon as it is already produced and validated. Qualitative and quantitative results show both an overall satisfaction from students participating in the experiences, and better results in the common written exams, when compared to the other groups following the traditional method.Benlloch-Dualde, J.; Blanc Clavero, S. (2014). Learning supported by peer production and digital ink. IEEE. doi:10.1109/FIE.2014.7044090

    Producción de Objetos de Aprendizaje en Cursos de Ingeniería

    Full text link
    [EN] This paper presents an innovation research on promoting self-learning in engineering university courses. The work is focused on students' homework activity that consists of producing Learning digital Objects. The digital objects are self-contained and reusable within the course framework attending to a suitable work planning and supported by digital tools. Additionally to help the student on the achievement of curricula competences by producing these objects, the objects are also available to the whole group in the form of a digital collection of self-study material adapted to the group idiosyncrasy. The paper describes a practical case of study, analysesEste trabajo ha sido parcialmente subvencionado por la E.T.S de Ingeniería Informática de la Universitat Politècnica de València.Blanc Clavero, S.; Benlloch-Dualde, JV. (2013). Producción de Objetos de Aprendizaje en Cursos de Ingeniería. VAEP-RITA. Versión Abierta Español-Portugués. 1(2):80-87. http://hdl.handle.net/10251/39135S80871

    Multi-constellation GNSS interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring

    Full text link
    [EN] Per capita arable land is decreasing due to the rapidly increasing population, and fresh water is becoming scarce and more expensive. Therefore, farmers should continue to use technology and innovative solutions to improve efficiency, save input costs, and optimise environmental resources (such as water). In the case study presented in this paper, the Global Navigation Satellite System interferometric reflectometry (GNSS-IR) technique was used to monitor soil moisture during 66¿d, from 3 December 2018 to 6 February 2019, in the installations of the Cajamar Centre of Experiences, Paiporta, Valencia, Spain. Two main objectives were pursued. The first was the extension of the technique to a multi-constellation solution using GPS, GLONASS, and GALILEO satellites, and the second was to test whether mass-market sensors could be used for this technique. Both objectives were achieved. At the same time that the GNSS observations were made, soil samples taken at 5¿cm depth were used for soil moisture determination to establish a reference data set. Based on a comparison with that reference data set, all GNSS solutions, including the three constellations and the two sensors (geodetic and mass market), were highly correlated, with a correlation coefficient between 0.7 and 0.85.Martín Furones, ÁE.; Ibañez Asensio, S.; Baixauli, C.; Blanc Clavero, S.; Anquela Julián, AB. (2020). Multi-constellation GNSS interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring. Hydrology and Earth System Sciences. 24(7):3573-3582. https://doi.org/10.5194/hess-24-3573-2020S35733582247Chan, S. K., Bindlish, R., O'Neill, P. E., Njoku, E., Jackson, T., Colliander, A., Chen, F., Burgin, M., Dunbar, S., Piepmeier, J., Yueh, S., Entekhabi, D., Cosh, M. H., Caldwell, T., Walker, J., Wu, X., Berg, A., Rowlandson, T., Pacheco, A., McNairn, H., Thibeault, M., Martiìnez-Fernaìndez, J., Gonzaìlez-Zamora, A., Seyfried, M., Bosch, D., Starks, P., Goodrich, D., Prueger, J., Palecki, M., Small, E. E., Zreda, M., Calvet, J.-C., Crow, W., and Kerr, Y.: Assessment of the SMAP passive soil moisture product, IEEE T. Geosci. Remote, 54, 4994–5007, 2016.Chen, Q., Won, D., Akos, D. M., and Small, E. E.: Vegetation using GPS interferometric reflectometry: experimental results with a horizontal polarized antenna, IEEE J. Sel. Top. Appl., 9, 4771–4780, 2016.Chew, C. C., Small, E. E., Larson, K. M., and Zavorotny, V. U.: Effects of near-surface soil moisture on GPS SNR data: development and retrieval algorithm for soil moisture, IEEE T. Geosci. Remote, 52, 537–543, 2014.Chew, C. C., Small, E. E., Larson, K. M., and Zavorotny, U.Z.: Vegetation sensing using GPS-interferometric reflectometry: theoretical effects of canopy parameters on signal-to-noise ratio data, IEEE T. Geosci. Remote, 53, 2755–2764, 2015.Chew, C. C., Small, E. E., and Larson, K. M.: An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil, GPS Solut., 20, 525–537, 2016.Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E.: GNSS Global Navigation Satellite Systems, GPS, GLONASS, GALILEO and more, Springer, Vienna, Austria, New York, USA, 2008.Katzberg, S. J., Torres, O., Grant, M. S., and Masters, D.: Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: results from SMEX02, Remote Sens. Environ., 100, 17–28, 2005.Kerr, Y., Waldteufel, P., Wigneron, J., Martinuzzi, J., Font, J., and Berger, M.: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission, IEEE T. Geosci. Remote, 39, 1729–1735, 2001.Larson, K. M. and Nievinski, F. G.: GPS snow sensing: results from the EarthScope plate boundary observatory, GPS Solut., 17, 41–52, 2013.Larson, K. M., Small, E. E., Gutmann, E. D., Bilich, A. L., Axelrad, A., and Braun, J. J.: Using GPS multipath to measure soil moisture fluctuations: initial results, GPS Solut., 12, 173–177, 2008a.Larson, K. M., Small, E. E., Gutmann, E. D., Bilich, A. L., Braun, J. J., and Zavorotny, V. U.: Use of GPS receivers as a soil moisture network for water cycle studies, Geophys. Res. Lett., 35, L24405, https://doi.org/10.1029/2008GL036013, 2008b.Larson, K. M., Braun, J. J., Small, E. E., and Zavorotny, V. U.: GPS multipath and its relation to near-surface soil moisture content, IEEE J. Sel. Top. Appl., 3, 91–99, 2010.Leick, A., Rapoport, L., and Tatarnikov, D.: GPS satellite surveying, 4th edn., John Wiley & Sons, Hoboken, New Jersey, USA, 840 pp., 2015.Li, G. and Geng, J.: Characteristics of raw multi-GNSS measurement error from Google Android smart devices, GPS Solut., 23, 1–5, https://doi.org/10.1007/s10291-019-0885-4, 2019.Lomb, N. R.: Least-squares frequency – Analysis of unequally spaced data, Astrophys. Space Sci., 39, 447–462, 1976.Masters, D., Axelrad, P., and Katzberg, S.: Initial results of land-reflected GPS bistatic radar measurements in SMEX02, Remote Sens. Environ., 92, 507–520, 2002.Mattia, F., Balenzano, A., Satalino, G., Lovergine, F., Peng, J., Wegmuller, U., Cartus, O., Davidson, M. W. J., Ki<span id="page3582"/>m S., Johnson, J., Walker, J., Wu, X., Pauwels, V. R. N., McNairn, H., Caldwell, T., Cosh, M., and Jackson, T.: Sentinel-1 & Sentinel-2 for SOIL Moisture Retrieval at Field Scale, IGARSS 2018–2018, IEEE I. Geosci. Rem. Sens. Symposium, 22–27 July 2018, Valencia, Spain, 6143–6146, https://doi.org/10.1109/IGARSS.2018.8518170, 2018.Press, W. H., Teukolsky, S. S., Vetterling, W. T., and Flannery, B. P.: Numerical recipes in Fortran 77, vol. 1, 2nd edn., Cambirdge University Press, New York, USA, 569–573, 1992.Roesler, C. and Larson, K. M.: Software tools for GNSS interferometric reflectometry (GNSS-IR), GPS Solut., 22, 80, https://doi.org/10.1007/s10291-018-0744-8, 2018.Roussel, N., Frappart, F., Ramillien, G., Darroes, J., Baup, F., Lestarquit, L., and Ha, M. C.: Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2∘ to 70∘, IEEE J. Sel. Top. Appl., 9, 4781–4794, 2016.Small, E. E., Larson, K. M., Chew, C. C., Dong, J., and Ochsner, T. E.: Validation of GPS-IR soil moisture retrievals: comparison of different algorithms to remove vegetation effects, IEEE J. Sel. Top. Appl., 9, 4759–4770, 2016.Strang, G. and Borre, K.: Linear algebra, Geodesy and GPS, Wellesley-Cambride Press, 624 pp., available at: https://www.unavco.org/data/gps-gnss/derived-products/pbo-h2o/documentation/documentation.html#soil (last access: 18 December 2019), 1997.Vey, S., Güntner, A., Wickert, J., Blume, T., and Ramatschi, M.: Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: a case study for Sutherland, South Africa, GPS Solut., 20, 641–654, https://doi.org/10.1007/s10291-015-0474-0, 2016.Wan, W., Larson, K. M., Small, E. E., Chew, C. C., and Braun, J. J.: Using geodetic GPS receivers to measure vegetation water content, GPS Solut., 19, 237–248, 2015.Zavorotny, V. U., Masters, D., Gasiewski, A., Bartram, B., Katzberg, S., Aselrad, P., and Zamora, R.: Seasonal polarimetric measurements of soil moisture using tower-based GPS bistatic radar, IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 2003, vol. 2, 781–783, https://doi.org/10.1109/IGARSS.2003.1293916, 2003.Zhang, S., Roussel, N., Boniface, K., Ha, M. C., Frappart, F., Darrozes, J., Baup, F., and Calvet, J.-C.: Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop, Hydrol. Earth Syst. Sci., 21, 4767–4784, https://doi.org/10.5194/hess-21-4767-2017, 2017

    A Service Discovery Solution for Edge Choreography-Based Distributed Embedded Systems

    Full text link
    [EN] This paper presents a solution to support service discovery for edge choreography based distributed embedded systems. The Internet of Things (IoT) edge architectural layer is composed of Raspberry Pi machines. Each machine hosts different services organized based on the choreography collaborative paradigm. The solution adds to the choreography middleware three messages passing models to be coherent and compatible with current IoT messaging protocols. It is aimed to support blind hot plugging of new machines and help with service load balance. The discovery mechanism is implemented as a broker service and supports regular expressions (Regex) in message scope to discern both publishing patterns offered by data providers and client services necessities. Results compare Control Process Unit (CPU) usage in a request¿response and datacentric configuration and analyze both regex interpreter latency times compared with a traditional message structure as well as its impact on CPU and memory consumption.The choreography engine was developed and supported by the SABIEN research group of the Universitat Politecnica de Valencia (http://www.sabien.upv.es/en/).Blanc Clavero, S.; Bayo-Monton, JL.; Palanca-Barrio, S.; Arreaga-Alvarado, NX. (2021). A Service Discovery Solution for Edge Choreography-Based Distributed Embedded Systems. Sensors. 21(2):1-19. https://doi.org/10.3390/s21020672S11921
    corecore